Skip to main content

Screening for amyloid proteins in the yeast proteome

15Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The search for novel pathological and functional amyloids represents one of the most important tasks of contemporary biomedicine. Formation of pathological amyloid fibrils in the aging brain causes incurable neurodegenerative disorders such as Alzheimer’s, Parkinson’s Huntington’s diseases. At the same time, a set of amyloids regulates vital processes in archaea, prokaryotes and eukaryotes. Our knowledge of the prevalence and biological significance of amyloids is limited due to the lack of universal methods for their identification. Here, using our original method of proteomic screening PSIA–LC–MALDI, we identified a number of proteins that form amyloid-like detergent-resistant aggregates in Saccharomyces cerevisiae. We revealed in yeast strains of different origin known yeast prions, prion-associated proteins, and a set of proteins whose amyloid properties were not shown before. A substantial number of the identified proteins are cell wall components, suggesting that amyloids may play important roles in the formation of this extracellular protective sheath. Two proteins identified in our screen, Gas1 and Ygp1, involved in biogenesis of the yeast cell wall, were selected for detailed analysis of amyloid properties. We show that Gas1 and Ygp1 demonstrate amyloid properties both in vivo in yeast cells and using the bacteria-based system C-DAG. Taken together, our data show that this proteomic approach is very useful for identification of novel amyloids.

Cite

CITATION STYLE

APA

Ryzhova, T. A., Sopova, J. V., Zadorsky, S. P., Siniukova, V. A., Sergeeva, A. V., Galkina, S. A., … Galkin, A. P. (2018). Screening for amyloid proteins in the yeast proteome. Current Genetics, 64(2), 469–478. https://doi.org/10.1007/s00294-017-0759-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free