Estimating causal effects from nonparanormal observational data

3Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

One of the basic aims of science is to unravel the chain of cause and effect of particular systems. Especially for large systems, this can be a daunting task. Detailed interventional and randomized data sampling approaches can be used to resolve the causality question, but for many systems, such interventions are impossible or too costly to obtain. Recently, Maathuis et al. (2010), following ideas from Spirtes et al. (2000), introduced a framework to estimate causal effects in large scale Gaussian systems. By describing the causal network as a directed acyclic graph it is a possible to estimate a class of Markov equivalent systems that describe the underlying causal interactions consistently, even for non-Gaussian systems. In these systems, causal effects stop being linear and cannot be described any more by a single coefficient. In this paper, we derive the general functional form of a causal effect in a large subclass of non-Gaussian distributions, called the non-paranormal. We also derive a convenient approximation, which can be used effectively in estimation. We show that the estimate is consistent under certain conditions and we apply the method to an observational gene expression dataset of the Arabidopsis thaliana circadian clock system.

Cite

CITATION STYLE

APA

Mahmoudi, S. M., & Wit, E. C. (2018). Estimating causal effects from nonparanormal observational data. International Journal of Biostatistics, 14(2). https://doi.org/10.1515/ijb-2018-0030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free