Preparation of carbamazepine-Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting

165Citations
Citations of this article
239Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Hot-melt extrusion (HME) is a dust- and solvent-free continuous process enabling the preparation of a variety of solid dosage forms containing solid dispersions of poorly soluble drugs into thermoplastic polymers. Miscibility of drug and polymer is a prerequisite for stable solid dispersion formation. The present study investigates the feasibility of forming solid dispersions of carbamazepine (CBZ) into polyethyleneglycol-polyvinyl caprolactam-polyvinyl acetate grafted copolymer (Soluplus®) by hot-melt extrusion. Physicochemical properties of the raw materials, extrudates, co-melted products, and corresponding physical mixtures were characterized by thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflectance infrared (ATR-FTIR) spectroscopy and hot stage microscopy (HSM), while miscibility of CBZ and Soluplus® was estimated on the basis of the Flory-Huggins theory, Hansen solubility parameters, and solid-liquid equilibrium equation. It was found that hot-melt extrusion of carbamazepine and Soluplus® is feasible on a single-screw hot-melt extruder without the addition of plasticizers. DSC analysis and FTIR spectroscopy revealed that a molecular dispersion is formed when the content of CBZ does not exceed ∼5% w/w while higher CBZ content results in a microcrystalline dispersion of CBZ form III crystals, with the molecularly dispersed percentage increasing with extrusion temperature, at the risk of inducing transformation to the undesirable form I of CBZ. Thermodynamic modeling elucidated potential limitations and temperature dependence of solubility/dispersibility of carbamazepine in Soluplus® hot-melt extrudates. The results obtained by thermodynamic models are in agreement with the findings of the HME processing, encouraging therefore their further application in the HME process development. © 2013 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Djuris, J., Nikolakakis, I., Ibric, S., Djuric, Z., & Kachrimanis, K. (2013). Preparation of carbamazepine-Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 228–237. https://doi.org/10.1016/j.ejpb.2012.12.018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free