Pulmonary epithelial barrier dysfunction is a critical pathological component of lung injury, caused primarily by impaired epithelial cell migration. Moreover, macrophage-epithelial interactions in pulmonary alveoli may either protect or damage epithelial barrier function. To investigate the effects of different macrophage subtypes, M1 and M2, on lipopolysaccharide (LPS)-induced epithelial barrier dysfunction, M1 and M2 macrophages were used to treat LPS-injured musculus lung epithelial cells (MLE-12). Barrier function was evaluated by monitoring cell monolayer permeability, T-cell immunoglobulin mucin 3 (Tim-3) small interfering RNA and anti-mouse Tim-3 antibody were used to knockdown or block endogenous Tim-3, to verify the role of the Tim-3 in macrophage-mediated barrier protection in LPS-injured MLE-12 cells. LY294002 was used to inhibit the activity of PI3K to verify the role of the PI3K/Akt signaling pathway in the restoration of epithelial cell. The present results revealed that co-culture of LPS-treated epithelial MLE-12 cells with M1 macrophages decreased cell migration and promoted permeability, whereas co-culture with M2 macrophages caused the opposite effects. It was determined that blocking T-cell immunoglobulin mucin 3 (Tim-3) signaling in macrophages and PI3K/Akt signaling in epithelial cells eliminated the barrier protection supplied by M2 macrophages. Tim-3, which maintains macrophage M2 polarization, is a key component of the macrophage-mediated barrier-repair process, while M2 macrophages regulate PI3K/Akt signaling in epithelial cells, which in turn enhances pulmonary epithelial barrier function by restoring cell migration.
CITATION STYLE
Zhang, Y., & Zhang, W. (2020). Tim‑3 regulates the ability of macrophages to counter lipopolysaccharide‑induced pulmonary epithelial barrier dysfunction via the PI3K/Akt pathway in epithelial cells. Molecular Medicine Reports, 22(1), 534–542. https://doi.org/10.3892/mmr.2020.11109
Mendeley helps you to discover research relevant for your work.