Many biological and biomedical laboratories in the Greater Jakarta have limited facilities. Problems arise when bio-specimen transports are moved from one laboratory to another. These transports may take hours due to traffic in the Greater Jakarta area. Lengthy transport may be problematic to the research at-hand, since many biological specimens will fail to survive if temperatures exceed 37°C for even a few minutes. When this happens, the condition of the specimen may be compromised or even damaged. To address this problem, we fabricated and tested a conditioned bio-specimen transporter (Conbiport). The Conbiport used a Rubbermaid cooler box as a basis, which is made of high-density polyethylene (HDPE), allowing for temperature preservation. The Conbiport was equipped with an Arduino microcontroller, a heater, a temperature sensor, and its peripheral components so that the temperature inside the Conbiport could be steadily maintained. Four different control system configurations were tested: proportional (P-dom), proportional-derivative (PD-dom), proportional-integral-derivative (PID) and on-off. The results showed that the P-dom configuration exhibited the fastest heat rate. This configuration may provide better portability when it comes to specimen testing, despite the tendency of the temperature to offset from the setpoint. On the other hand, the PID controller provided the most stable temperature preservation, although it took a longer time to achieve the setpoint. Nonetheless, we proved that the Conbiport could maintain the temperature required for specimen transportation in urban areas, such as Greater Jakarta.
CITATION STYLE
Nadhif, M. H., Hadiputra, A. P., Utomo, M. S., & Whulanza, Y. (2019). Fabrication and characterization of an affordable conditioned bio-specimen transporter (conbiport) for urban areas. International Journal of Technology, 10(8), 1626–1634. https://doi.org/10.14716/ijtech.v10i8.3523
Mendeley helps you to discover research relevant for your work.