OBJECTIVE: To determine the safety and efficacy of an automated unified safety system (USS) in providing overnight closed-loop (OCL) control in children and adolescents with type 1 diabetes attending diabetes summer camps. RESEARCH DESIGN AND METHODS: The Diabetes Assistant (DIAS) USS used the Dexcom G4 Platinum glucose sensor (Dexcom) and t: slim insulin pump (Tandem Diabetes Care). An initial inpatient study was completed for 12 participants to evaluate safety. For the main camp study, 20 participants with type 1 diabetes were randomized to either OCL or sensor-augmented therapy (control conditions) per night over the course of a 5-to 6-day diabetes camp. RESULTS: Subjects completed 54 OCL nights and 52 control nights. On an intention-to-treat basis, with glucose data analyzed regardless of system status, the median percent time in range, from 70-150 mg/dL, was 62% (29, 87) for OCL nights versus 55% (25, 80) for sensor-augmented pump therapy (P = 0.233). A per-protocol analysis allowed for assessment of algorithm performance. The median percent time in range, from 70-150 mg/dL, was 73% (50, 89) for OCL nights (n = 41) versus 52% (24, 83) for control conditions (n = 39) (P = 0.037). There was less time spent in the hypoglycemic range <50, <60, and <70 mg/dL during OCL compared with the control period (P = 0.019, P = 0.009, and P = 0.023, respectively). CONCLUSIONS: The DIAS USS algorithm is effective in improving time spent in range as well as reducing nocturnal hypoglycemia during the overnight period in children and adolescents with type 1 diabetes in a diabetes camp setting. © 2014 by the American Diabetes Association.
CITATION STYLE
Ly, T. T., Breton, M. D., Keith-Hynes, P., De Salvo, D., Clinton, P., Benassi, K., … Buckingham, B. A. (2014). Overnight glucose control with an automated, unified safety system in children and adolescents with type 1 diabetes at diabetes camp. Diabetes Care, 37(8), 2310–2316. https://doi.org/10.2337/dc14-0147
Mendeley helps you to discover research relevant for your work.