Glycophorin A-mediated haemolysis of normal human erythrocytes: Evidence for antigen aggregation in the pathogenesis of immune haemolysis

26Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The inexplicable severity of anti-Pr autoimmune haemolytic anaemia led us to test the hypothesis that the haemolysis was primarily due to a change in the function of glycophorin A, on which the Pr antigen is located. The lectins Maclura pomifera and wheat germ agglutinin that bind to glycophorin A induced the haemolysis of normal erythrocytes in vitro. Lectin binding led to an increase in erythrocyte membrane permeability to sodium and potassium, the former resulting in an influx of water and subsequent haemolysis. The response was glycophorin A specific as Concanavalin A, which binds to band 3, did not cause haemolysis and peanut agglutinin only did so after removal of erythrocyte sialic acid. The lectin-induced cation leak was not mediated by activation of cation channels as the inhibitors, tetrodotoxin, amiloride and 4,4′ diisothiocyanate stilbene 2,2′disulphonate, had no effect, suggesting that the haemolysis was due to exacerbation of the inherent cation permeability of the erythrocyte membrane. A human IgAK anti-Pr autoantibody and a mouse anti-human glycophorin A antibody increased erythrocyte permeability to sodium. The role of glycophorin A in stabilizing and, upon aggregation, destabilizing the phospholipid bilayer is discussed. Our findings may help explain the severity of anti-Pr autoimmune haemolytic anaemia and other pathophysiological changes in human erythrocytes.

Cite

CITATION STYLE

APA

Brain, M. C., Prevost, J. M., Pihl, C. E., & Brown, C. B. (2002). Glycophorin A-mediated haemolysis of normal human erythrocytes: Evidence for antigen aggregation in the pathogenesis of immune haemolysis. British Journal of Haematology, 118(3), 899–908. https://doi.org/10.1046/j.1365-2141.2002.03657.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free