We report a determinant quantum Monte Carlo study of a two-band model, inspired by infinite-layer nickelates, focusing on the influence of interlayer hybridization between 3dx2−y2 orbitals derived from Ni (or Ni and O) in one layer and rare-earth (R) 5d orbitals in the other layer, hereafter the Ni and R layers, respectively. For a filling with one electron shared between the two layers on average, interlayer hybridization leads to “self-doped" holes in the Ni layer and the absence of antiferromagnetic ordering, but rather the appearance of spin-density and charge-density stripe-like states. As the interlayer hybridization increases, both the Ni and R layers develop antiferromagnetic correlations, even though either layer individually remains away from half-filling. For hybridization within an intermediate range, roughly comparable to the intralayer nearest-neighbor hopping tNi, the model develops signatures of Kondo-like physics.
CITATION STYLE
Liu, F., Peng, C., Huang, E. W., Moritz, B., Jia, C., & Devereaux, T. P. (2024). Emergence of antiferromagnetic correlations and Kondolike features in a model for infinite layer nickelates. Npj Quantum Materials, 9(1). https://doi.org/10.1038/s41535-024-00659-x
Mendeley helps you to discover research relevant for your work.