Photothermal effects and heat conduction in nanogranular silicon films

3Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present results on the photothermal (PT) and heat conductive properties of nanogranu-lar silicon (Si) films synthesized by evaporation of colloidal droplets (drop-casting) of 100 ± 50 nm-sized crystalline Si nanoparticles (NP) deposited on glass substrates. Simulations of the absorbed light intensity and photo-induced temperature distribution across the Si NP films were carried out by using the Finite difference time domain (FDTD) and finite element mesh (FEM) modeling and the obtained data were compared with the local temperatures measured by micro-Raman spectroscopy and then was used for determining the heat conductivities k in the films of various thicknesses. The cubic-to-hexagonal phase transition in Si NP films caused by laser-induced heating was found to be heavily influenced by the film thickness and heat-conductive properties of glass substrate, on which the films were deposited. The k values in drop-casted Si nanogranular films were found to be in the range of lowest k of other types of nanostructurely voided Si films due to enhanced phonon scattering across inherently voided topology, weak NP-NP and NP-substrate interface bonding within nanogranular Si films.

Cite

CITATION STYLE

APA

Kurbanova, B. A., Mussabek, G. K., Timoshenko, V. Y., Lysenko, V., & Utegulov, Z. N. (2021). Photothermal effects and heat conduction in nanogranular silicon films. Nanomaterials, 11(9). https://doi.org/10.3390/nano11092379

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free