Notch signaling is active in many sites, and its diverse activities must require tissue-specific intermediaries, which are largely unknown. In the intestinal epithelium, Notch promotes crypt cell proliferation and inhibits goblet cell differentiation. Pharmacologic studies suggest that the latter effect occurs through the transcription factor Math1/Atoh1, which specifies all intestinal secretory cells. We tested this hypothesis using mouse mutants. Genetic loss of the Notch effector RBP-Jκ alone increases all intestinal secretory lineages, with variation between proximal and distal gut segments. This secretory cell excess observed with RBP-Jκ loss was blocked in the absence of Math1 in RBP-JκFl/Fl;Math1Fl/Fl;Villin- Cre(ER-T2) mice. Loss of both factors also restored progenitor replication, proving that Math1 is epistatic to Notch signaling in both secretory cell differentiation and crypt cell proliferation. Investigating mechanisms downstream of Math1, we found that expression of the known Notch effector protein Hes1 was predictably lost in RBP-Jκ-/- mice but surprisingly recovered in RBP-Jκ;Math1 compound conditional mutants. Furthermore, the cell cycle inhibitors p27Kip1 and p57Kip2 were selectively overexpressed in duodenal and ileal crypts, respectively, in RBP-Jκ-deficient mice. Regional activation of these products was completely abrogated in the absence of Math1. Thus, all intestinal Notch effects channel through the tissue-restricted factor Math1, which promotes secretory differentiation and cell cycle exit by regionally distinct mechanisms. Our data further suggest that, besides transmitting Notch signals, the transcription factor Hes1 acts downstream of Math1 to regulate expression of cell cycle inhibitors and intestinal crypt cell replication. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Kim, T. H., & Shivdasani, R. A. (2011). Genetic evidence that intestinal Notch functions vary regionally and operate through a common mechanism of math1 repression. Journal of Biological Chemistry, 286(13), 11427–11433. https://doi.org/10.1074/jbc.M110.188797
Mendeley helps you to discover research relevant for your work.