Identifying Elastic and Viscoelastic Material Parameters by Means of a Tikhonov Regularization

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

For studying the interaction of displacements, stresses, and acting forces for elastic and viscoelastic materials, it is of utmost importance to have a decent mathematical model available. Usually such a model consists of a coupled set of nonlinear differential equations together with appropriate boundary conditions. However, since the different material classes vary significantly with respect to their physical and mechanical behavior, the parameters which appear in these equations are unknown and therefore have to be determined before the equations can be used for further investigations or simulations. It is this very step which is addressed in this article where we consider elastic as well as viscoelastic material behavior. The idea is to compute the parameters as solutions of a minimization problem for Tikhonov functionals. Tikhonov regularization is a well-established solution technique for tackling inverse problems. On the one hand, it assures a computation that is stable with respect to noisy input data, and on the other hand, it involves desired a priori information on the solution. In this article we develop problem adapted Tikhonov functionals and prove that a Tikhonov regularization improves the accuracy especially when the underlying system is ill-conditioned.

Cite

CITATION STYLE

APA

Diebels, S., Scheffer, T., Schuster, T., & Wewior, A. (2018). Identifying Elastic and Viscoelastic Material Parameters by Means of a Tikhonov Regularization. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/1895208

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free