Methyl-mercury degradation pathways: A comparison among three mercury impacted ecosystems

Citations of this article
Mendeley users who have this article in their library.
Get full text


We examined microbial methylmercury (MeHg) degradation in sediment of the Florida Everglades, Carson River (NV), and San Carlos Creek (CA), three freshwater environments that differ in the extent and type of mercury contamination and sediment biogeochemistry. Degradation rate constant (kdeg) values increased with total mercury (Hgt) contamination both among and within ecosystems. The highest kdeg′s (2.8-5.8 d-1) were observed in San Carlos Creek, at acid mine drainage impacted sites immediately downstream of the former New Idria mercury mine, where Hgt ranged from 4.5 to 21.3 ppm (dry wt). A reductive degradation pathway (presumably mer-detoxification) dominated degradation at these sites, as indicated by the nearly exclusive production of 14CH4 from 14C-MeHg, under both aerobic and anaerobic conditions. At the upstream control site, and in the less contaminated ecosystems (e.g. the Everglades), kdeg′s were low (≤0.2 d-1) and oxidative demethylation (OD) dominated degradation, as evident from 14CO2 production. kdeg in increased with microbial CH4 production, organic content, and reduced sulfur in the Carson River system and increased with decreasing pH in San Carlos Creek. OD associated CO2 production increased with pore-water SO42- in Everglades samples but was not attributable to anaerobic methane oxidation, as has been previously proposed. This ecosystem comparison indicates that severely contaminated sediments tend to have microbial populations that actively degrade MeHg via mer-detoxification, whereas OD occurs in heavily contaminated sediments as well but dominates in those less contaminated.




Marvin-Dipasquale, M., Agee, J., Mcgowan, C., Oremland, R. S., Thomas, M., Krabbenhoft, D., & Gilmour, C. C. (2000). Methyl-mercury degradation pathways: A comparison among three mercury impacted ecosystems. Environmental Science and Technology, 34(23), 4908–4916.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free