Handheld optical system for pectus excavatum assessment

4Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Disruptive 3D technologies, such as reverse engineering (RE) and additive manufacturing (AM), when applied in the medical field enable the development of new methods for personalized and non-invasive treatments. When referring to the monitoring of pectus excavatum, one of the most common thoracic malformations, 3D acquisition of the patient chest proved to be a straightforward method for assessing and measuring chest deformation. Unfortunately, such systems are usually available in a dedicated facility, can be operated only by specialized doctors with the support of engineers and can be used only with patients on site. It is therefore impossible to perform any routine check-up when the patient is unable to reach the outpatient clinic. The COVID19 pandemic situation has placed even greater restrictions on patient mobility, worsening this problem. To deal with this issue, a new low-cost portable optical scanner for monitoring pectus excavatum is proposed in this work. The scanner, named Thor 2.0, allows a remote diagnostic approach, offering the possibility to perform routine check-ups telematically. Usability tests confirmed the user-friendly nature of the devised system. The instrument was used at the Meyer Children’s Hospital (Florence, Italy) chest-malformations center to treat PE patients. The performed measurements proved to be in line with the current state of the art.

Cite

CITATION STYLE

APA

Servi, M., Zulli, A., Volpe, Y., Furferi, R., Puggelli, L., Messineo, A., … Facchini, F. (2021). Handheld optical system for pectus excavatum assessment. Applied Sciences (Switzerland), 11(4), 1–13. https://doi.org/10.3390/app11041726

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free