We describe a pre-embedding immunocytochemical method for visualization of the lysosomal enzyme cathepsin D in cultured cells. The protein was demonstrated at both light and electron microscopic levels by neutral-pH silver enhancement of ultrasmall (0.8-nm) gold particles conjugated to the antibodies. The best morphological preservation and the highest labeling density were achieved by initial fixation for 20 min at 4C in 4% paraformaldehyde (PFA) and 0.05% glutaraldehyde (GA) in 0.15 M sodium cacodylate buffer, followed by permeabilization in sodium borohydride. Three cell types were used: human foreskin fibroblasts, histocytic lymphoma (J- 774) cells, and primary rat heart myocytes. In all three, cathepsin D was demonstrated in lysosome-like structures. The rat heart myocytes were also exposed to the redox cycling substance naphthazarin (5,8-dihydroxy-1,4- naphthoquinone) to induce oxidative stress. This was done for such a short period of time that the cells initially did not show any signs of morphological damage and retained normal plasma membrane stability, although an early and clear redistribution of cathepsin D from membrane-bound structures to the cytosol was apparent. This redistribution was followed by cell degeneration and, eventually, by cell death.
CITATION STYLE
Roberg, K., & Öllinger, K. (1998). A pre-embedding technique for immunocytochemical visualization of cathepsin D in cultured cells subjected to oxidative stress. Journal of Histochemistry and Cytochemistry, 46(3), 411–418. https://doi.org/10.1177/002215549804600316
Mendeley helps you to discover research relevant for your work.