Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at late stages, limiting treatment options and survival rates. Pyroptosis-related gene signatures hold promise as PDAC prognostic markers, but limited gene pools and small sample sizes hinder their utility. We aimed to enhance PDAC prognosis with a comprehensive multi-algorithm analysis. Using R, we employed natural language processing and latent Dirichlet allocation on PubMed publications to identify pyroptosis-related genes. We collected PDAC transcriptome data (n = 1273) from various databases, conducted a meta-analysis, and performed differential gene expression analysis on tumour and non-cancerous tissues. Cox and LASSO algorithms were used for survival modelling, resulting in a pyroptosis-related gene expression-based prognostic index. Laboratory and external validations were conducted. Bibliometric analysis revealed that pyroptosis publications focus on signalling pathways, disease correlation, and prognosis. We identified 357 pyroptosis-related genes, validating the significance of BHLHE40, IL18, BIRC3, and APOL1. Elevated expression of these genes strongly correlated with poor PDAC prognosis and guided treatment strategies. Our accessible nomogram model aids in PDAC prognosis and treatment decisions. We established an improved gene signature for pyroptosis-related genes, offering a novel model and nomogram for enhanced PDAC prognosis.
CITATION STYLE
Wang, K., Han, S., Liu, L., Zhao, L., & Herr, I. (2024). Multi-Algorithm Analysis Reveals Pyroptosis-Linked Genes as Pancreatic Cancer Biomarkers. Cancers, 16(2). https://doi.org/10.3390/cancers16020372
Mendeley helps you to discover research relevant for your work.