Observing the end of cold flow accretion using halo absorption systems

75Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

We use cosmological smoothed particle hydrodynamic simulations to study the cool, accreted gas in two Milky Way size galaxies through cosmic time to z = 0. We find that gas from mergers and cold flow accretion results in significant amounts of cool gas in galaxy halos. This cool circum-galactic component drops precipitously once the galaxies cross the critical mass to form stable shocks, M vir = M sh ∼1012 M⊙. Before reaching M sh, the galaxies experience cold mode accretion (T < 105K) and show moderately high covering fractions in accreted gas: fc ∼30%-50% for R < 50 comoving kpc and cm-2. These values are considerably lower than observed covering fractions, suggesting that outflowing gas (not included here) is important in simulating galaxies with realistic gaseous halos. Within ∼500Myr of crossing the M sh threshold, each galaxy transitions to hot mode gas accretion, and fc drops to ∼5%. The sharp transition in covering fraction is primarily a function of halo mass, not redshift. This signature should be detectable in absorption system studies that target galaxies of varying host mass, and may provide a direct observational tracer of the transition from cold flow accretion to hot mode accretion in galaxies. © 2011. The American Astronomical Society. All rights reserved.

Cite

CITATION STYLE

APA

Stewart, K. R., Kaufmann, T., Bullock, J. S., Barton, E. J., Maller, A. H., Diemand, J., & Wadsley, J. (2011). Observing the end of cold flow accretion using halo absorption systems. Astrophysical Journal Letters, 735(1). https://doi.org/10.1088/2041-8205/735/1/L1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free