Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime

47Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Swelling, or volumetric expansion, is an inevitable consequence of the atomic displacement damage in crystalline silicon carbide (SiC) caused by energetic neutron irradiation. Because of its steep temperature and dose dependence, understanding swelling is essential for designing SiC-based components for nuclear applications. In this study, swelling behaviors of monolithic CVD SiC and nuclear grade SiC fiber – SiC matrix (SiC/SiC) composites were accurately determined, supported by the irradiation temperature determination for individual samples, following neutron irradiation within the lower transition swelling temperature regime. Slightly anisotropic swelling behaviors were found for the SiC/SiC samples and attributed primarily to the combined effects of the pre-existing microcracking, fiber architecture, and specimen dimension. A semi-empirical model of SiC swelling was calibrated and presented. Finally, implications of the refined model to selected swelling-related issues for SiC-based nuclar reactor components are discussed.

Cite

CITATION STYLE

APA

Katoh, Y., Koyanagi, T., McDuffee, J. L., Snead, L. L., & Yueh, K. (2018). Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime. Journal of Nuclear Materials, 499, 471–479. https://doi.org/10.1016/j.jnucmat.2017.12.009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free