Voltage dependence of intramembrane charge movement and conductance activation of batrachotoxin-modified sodium channels in frog node of ranvier

16Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sodium current and sodium channel intramembrane gating charge movement (Q) were monitored in voltage-clamped frog node of Ranvier after modification of all sodium channels by batrachotoxin (BTX). BTX caused an approximately threefold increase in steepness of the Qvs. voltage relationship and a 50-mV negative shift in its midpoint. The maximum amount of intramembrane charge was virtually identical before and after BTX treatment. BTX treatment eliminated the charge immobilization observed in untreated nodes after relatively long depolarizing pulses and slowed the rate of OFF charge movement after a pulse. After BTX treatment, the voltage dependence of charge movement was the same as the steady-state voltage dependence of sodium conductance activation. The observations are consistent with the hypothesis that BTX induces an aggregation of the charged gating particles associated with each channel and causes them to move as a unit having approximately three times the average valence of the individual particles. Movement of this single aggregated unit would open the BTX-modified sodium channel. © 1983, Rockefeller University Press., All rights reserved.

Cite

CITATION STYLE

APA

Dubois, J. M., Schneider, M. F., & Khodorov, B. I. (1983). Voltage dependence of intramembrane charge movement and conductance activation of batrachotoxin-modified sodium channels in frog node of ranvier. Journal of General Physiology, 81(6), 829–844. https://doi.org/10.1085/jgp.81.6.829

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free