Decellularized vein as a potential scaffold for vascular tissue engineering

230Citations
Citations of this article
150Readers
Mendeley users who have this article in their library.

Abstract

Purpose Current strategies to create small-diameter vascular grafts involve seeding biocompatible, compliant scaffolds with autologous vascular cells. Our purpose was to study the composition and strength of decellularized vein to determine its potential as a vascular tissue-engineering scaffold. Methods Intact human greater saphenous vein specimens were decellularized by using sodium dodecyl sulfate (SDS). Residual cellular and extracellular matrix composition was studied with light and electron microscopy as well as immunohistochemistry. Burst and suture-holding strength was measured in vitro by insufflation and pull-through techniques. To assess initial handling and durability of decellularized vein in vivo, a canine model was developed wherein decellularized canine jugular veins were implanted as carotid interposition grafts in recipient animals. After two weeks of arterial perfusion, these grafts were studied with duplex imaging and histologic methods. Results Human saphenous vein decellularized by using SDS was devoid of endothelial cells and >94% of the cells resident within the vein wall. Collagen morphology appeared unchanged, and elastin staining decreased only slightly. Basement membrane collagen type IV remained intact. Compared with fresh vein, decellularized vein had similar in vitro burst (2480 ± 460 mm Hg vs 2380 ± 620 mm Hg; P > .05) and suture-holding (185 ± 30 gm vs 178 ± 66 gm; P > .05) strength. Decellularized canine vein functioned well in vivo without dilation, anastomotic complication, or rupture over 2 weeks of arterial perfusion. Conclusions Vein rendered acellular with SDS has well-preserved extracellular matrix, basement membrane structure, and strength sufficient for vascular grafting. These properties suggest proof of concept for its use as a scaffold for further vascular tissue engineering.

Cite

CITATION STYLE

APA

Schaner, P. J., Martin, N. D., Tulenko, T. N., Shapiro, I. M., Tarola, N. A., Leichter, R. F., … DiMuzio, P. J. (2004). Decellularized vein as a potential scaffold for vascular tissue engineering. Journal of Vascular Surgery, 40(1), 146–153. https://doi.org/10.1016/j.jvs.2004.03.033

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free