Prediction of protein-RNA interactions from single-cell transcriptomic data

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Proteins are crucial in regulating every aspect of RNA life, yet understanding their interactions with coding and noncoding RNAs remains limited. Experimental studies are typically restricted to a small number of cell lines and a limited set of RNA-binding proteins (RBPs). Although computational methods based on physico-chemical principles can predict protein-RNA interactions accurately, they often lack the ability to consider cell-type-specific gene expression and the broader context of gene regulatory networks (GRNs). Here, we assess the performance of several GRN inference algorithms in predicting protein-RNA interactions from single-cell transcriptomic data, and propose a pipeline, called scRAPID (single-cell transcriptomic-based RnA Protein Interaction Detection), that integrates these methods with the catRAPID algorithm, which can identify direct physical interactions between RBPs and RNA molecules. Our approach demonstrates that RBP-RNA interactions can be predicted from single-cell transcriptomic data, with performances comparable or superior to those achieved for the well-established task of inferring transcription factor-target interactions. The incorporation of catRAPID significantly enhances the accuracy of identifying interactions, particularly with long noncoding RNAs, and enables the identification of hub RBPs and RNAs. Additionally, we show that interactions between RBPs can be detected based on their inferred RNA targets. The software is freely available at https://github.com/tartaglialabIIT/scRAPID.

Cite

CITATION STYLE

APA

Fiorentino, J., Armaos, A., Colantoni, A., & Tartaglia, G. G. (2024). Prediction of protein-RNA interactions from single-cell transcriptomic data. Nucleic Acids Research, 52(6). https://doi.org/10.1093/nar/gkae076

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free