An introduction to mathematical biology

  • Davidson L
N/ACitations
Citations of this article
94Readers
Mendeley users who have this article in their library.

Abstract

An acid protease produced by the thermophilic fungus Penicillium duponti K 1014 has been purified by consecutive ion-exchange and gel permeation chromatography, and crystallized from aqueous acetone solution. The purified endopeptidase gave a symmetrical schlieren peak by sedimentation velocity, and was found to be homogeneous upon disc gel electrophoresis at pH 9.5. The enzyme was most active at pH 2.5 against milk casein and showed high thermostability. An isoelectric point of 3.81 was found by isoelectric focusing. A minimum molecular weight of 41 590 was calculated from the amino acid composition, adopting an arginine content of one residue per mole of enzyme. This minimum molecular weight is in good agreement with the value of 41 000 previously found by gel permeation (Hashimoto, H., Iwaasa, T., and Yokotsuka, T. (1973), Appl. Microbiol. 25, 578). Besides the thermostability, the purified P. duponti protease differs from other well-characterized acid proteases in that it contains carbohydrate, 4.33% expressed as glucose. The enzyme was not affected by p-bromophenacyl bromide, but was completely inactivated by α-diazo-p-bromoacetophenone, diazoacetyl- DL-norleucine methyl ester, and diazoacetylglycine ethyl ester, in the presence of Cu2+. The complete inactivation of the protease by diazoacetyl-DL-norleucine methyl ester resulted in the specific incorporation of 1 mol of norleucine/mol of enzyme. On the basis of similar behavior of other acid proteases toward this inactivator, the results suggest the presence at the active site of an unusually reactive carboxyl group, involved in the catalytic function. The naturally occurring pepsin inhibitor of Streptomyces naniwaensis [Murao, S., and Satoi, S. (1970), Agric. Biol. Chem. 34, 1265] inhibited also the protease, at a threefold molar excess with respect to the enzyme. © 1976, American Chemical Society. All rights reserved.

Cite

CITATION STYLE

APA

Davidson, L. (2011). An introduction to mathematical biology. Development, 138(24), 5269–5270. https://doi.org/10.1242/dev.066977

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free