Deformation and failure of rectangular plates subjected to impulsive loadings

Citations of this article
Mendeley users who have this article in their library.


The deformation and failure of fully-clamped rectangular plates subjected to zero-period, uniform-momentum impulsive loads are studied. Analytical predictions are given for the critical velocities corresponding to the transition between deformation modes. Three-dimensional (3D) numerical analyses were performed using the non-linear finite element (FE) code ABAQUS/Explicit® to predict the maximum central deflection and deformation mode of rectangular plates for different combinations of aspect ratios and impulses. Two competing mechanisms of bulk material failure, viz. by the nucleation, coalescence and growth of voids and by shear band localisation, are implemented in the FE model to simulate tensile tearing, resulting in progressive ductile fracture, at the support. The numerical results are validated against experimental data for square mild-steel and aluminium plates where they are found to be in good agreement. Deformation maps delineating the different deformation régimes for different combinations of blast impulse and aspect ratio are constructed for plates of equal mass. The effects of imposing a finite-period, as opposed to a zero-period, impulsive load upon the deformation mode and maximum deflection are also discussed. © 2013 Elsevier Ltd. All rights reserved.




Yuan, Y., & Tan, P. J. (2013). Deformation and failure of rectangular plates subjected to impulsive loadings. International Journal of Impact Engineering, 59, 46–59.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free