Transient receptor potential channels in rat renal microcirculation: Actions of angiotensin II

43Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. This study assessed the calcium-activating mechanisms mediating glomerular arteriolar constriction by angiotensin II (Ang II). Methods. Immunohistochemical and physiological studies were carried out, using antibody against transient receptor potential (TRP)-1 and an isolated perfused kidney model. Results. Immunohistochemical experiments demonstrated that TRP-1 proteins were transcribed on both afferent and efferent arteriolar myocytes. In the first series of physiological experiments, Ang II (0.3 nmol/L) considerably constricted afferent (20.2 ± 0.9 to 14.9 ± 0.7 μm) and efferent arterioles (18.4 ± 0.7 to 14.0 ± 0.7 μm). The addition of nifedipine (1 μmol/L) restored decrements in afferent (to 20.0 ± 0.8 μm) but not efferent arteriolar diameters. Further administration of SKF-96365 (100 μmol/L), a TRP channel blocker, reversed efferent arteriolar constriction (to 16.2 ± 0.8 μmol/L). In the second group, although 2-aminoethoxydiphenyl borate (100 μmol/L), an inhibitor of inositol trisphosphate-induced calcium release (IP3CR), did not alter glomerular arteriolar diameters, it prevented Ang II-induced afferent arteriolar constriction and attenuated efferent arteriolar constriction (18.8 ± 0.8 to 16.9 ± μm). Subsequent removal of extracellular calcium abolished residual efferent arteriolar constriction (to 19.1 ± 0.8 μm). Conclusions. Our data provide evidence that Ang II elicits IP3CR, possibly inducing a cellular response that activates voltage-dependent calcium channels on afferent arterioles. The present results suggest that Ang II-induced efferent arteriolar constriction involves IP3CR and calcium influx sensitive to SKF-96365.

Cite

CITATION STYLE

APA

Takenaka, T., Suzuki, H., Okada, H., Inoue, T., Kanno, Y., Ozawa, Y., … Saruta, T. (2002). Transient receptor potential channels in rat renal microcirculation: Actions of angiotensin II. Kidney International, 62(2), 558–565. https://doi.org/10.1046/j.1523-1755.2002.00484.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free