Post‐metaphase correction of aberrant kinetochore‐microtubule attachments in mammalian eggs

  • Kouznetsova A
  • Kitajima T
  • Brismar H
  • et al.
10Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The accuracy of the two sequential meiotic divisions in oocytes is essential for creating a haploid gamete with a normal chromosomal content. Here, we have analysed the 3D dynamics of chromosomes during the second meiotic division in live mouse oocytes. We find that chromosomes form stable kinetochore-microtubule attachments at the end of prometaphase II stage that are retained until anaphase II onset. Remarkably, we observe that more than 20% of the kinetochore-microtubule attachments at the metaphase II stage are merotelic or lateral. However, < 1% of all chromosomes at onset of anaphase II are found to lag at the spindle equator and < 10% of the laggards missegregate and give rise to aneuploid gametes. Our results demonstrate that aberrant kinetochore-microtubule attachments are not corrected at the metaphase stage of the second meiotic division. Thus, the accuracy of the chromosome segregation process in mouse oocytes during meiosis II is ensured by an efficient correction process acting at the anaphase stage.

Cite

CITATION STYLE

APA

Kouznetsova, A., Kitajima, T. S., Brismar, H., & Höög, C. (2019). Post‐metaphase correction of aberrant kinetochore‐microtubule attachments in mammalian eggs. EMBO Reports, 20(8). https://doi.org/10.15252/embr.201947905

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free