Pulmonary ductal coarctation and left pulmonary artery interruption; pathology and role of neural crest and second heart field during development

11Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

Objectives In congenital heart malformations with pulmonary stenosis to atresia an abnormal lateral ductus arteriosus to left pulmonary artery connection can lead to a localised narrowing (pulmonary ductal coarctation) or even interruption We investigated embryonic remodelling and pathogenesis of this area. Material and methods Normal development was studied in WntCre reporter mice (E10.0–12.5) for neural crest cells and Nkx2.5 immunostaining for second heart field cells. Data were compared to stage matched human embryos and a VEGF120/120 mutant mouse strain developing pulmonary atresia. Results Normal mouse and human embryos showed that the mid-pharyngeal endothelial plexus, connected side-ways to the 6th pharyngeal arch artery. The ventral segment formed the proximal pulmonary artery. The dorsal segment (future DA) was solely surrounded by neural crest cells. The ventral segment had a dual outer lining with neural crest and second heart field cells, while the distal pulmonary artery was covered by none of these cells. The asymmetric contribution of second heart field to the future pulmonary trunk on the left side of the aortic sac (so-called pulmonary push) was evident. The ventral segment became incorporated into the pulmonary trunk leading to a separate connection of the left and right pulmonary arteries. The VEGF120/120 embryos showed a stunted pulmonary push and a variety of vascular anomalies. Summary Side-way connection of the DA to the left pulmonary artery is a congenital anomaly. The primary problem is a stunted development of the pulmonary push leading to pulmonary stenosis/atresia and a subsequent lack of proper incorporation of the ventral segment into the aortic sac. Clinically, the aberrant smooth muscle tissue of the ductus arteriosus should be addressed to prohibit development of severe pulmonary ductal coarctation or even interruption of the left pulmonary artery.

Cite

CITATION STYLE

APA

Gittenberger-De Groot, A. C., Peterson, J. C., Wisse, L. J., Roest, A. A. W., Poelmann, R. E., Bökenkamp, R., … DeRuiter, M. C. (2020). Pulmonary ductal coarctation and left pulmonary artery interruption; pathology and role of neural crest and second heart field during development. PLoS ONE, 15(5). https://doi.org/10.1371/journal.pone.0228478

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free