Nanoparticle-induced changes in resistance and resilience of sensitive microbial indicators towards heat stress in soil

17Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Modern agricultural innovations with nanomaterials are now being applied in every sphere of agriculture. However, their interaction with soil microbial processes is not being explored in detail. This initiative was undertaken to understand the effect of metal-oxide nanoparticles with heat stress in soil. Metal-oxide nanoparticles, zinc oxide (ZnO), and iron oxide (Fe2O3) (each at 10 and 40 mg kg-1 w/w) were mixed into uncontaminated soil and subjected to heat stress of 48 °C for 24 hours to assess their effect on soil biological indicators. The resistance indices for the acid (ACP), alkaline phosphatase (AKP) activity, and fluorescein diacetate hydrolyzing (FDA) activity (0.58 to 0.73, 0.58 to 0.66, and 0.42 to 0.48, respectively) were higher in the presence of ZnO nanoparticles as compared to Fe2O3 nanomaterials, following an unpredictable pattern at either 10 or 40 mg kg-1 in soils, except dehydrogenase activity (DHA), for which the activity did not change with ZnO nanomaterial. An explicit role of ZnO nanomaterial in the revival pattern of the enzymes was observed (0.20 for DHA, 0.39 for ACP, and 0.43 for AKP), except FDA, which showed comparable values with Fe2O3 nanomaterials for the following 90 day (d) after stress. Microbial count exhibiting higher resistance values were associated with Fe2O3 nanoparticles as compared to ZnO nanomaterials, except Pseudomonas. The recovery indices for the microbial counts were higher with the application of Fe2O3 nanomaterials (0.34 for Actinobacteria, 0.38 for fungi, 0.33 for Pseudomonas and 0.28 for Azotobacter). Our study emphasizes the fact that sensitive microbial indicators in soil might be hampered by external stress initially but do have the competency to recover with time, thereby reinstating the resistance and resilience of soil systems.

Cite

CITATION STYLE

APA

Kumar, A., Rakshit, R., Bhowmik, A., Mandal, N., Das, A., & Adhikary, S. (2019). Nanoparticle-induced changes in resistance and resilience of sensitive microbial indicators towards heat stress in soil. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030862

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free