Improved Dynamic Contrast-Enhanced MRI Using Low Rank with Joint Sparsity

3Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This work presents a free-breathing dynamic contrast-enhanced (DCE) MRI reconstruction method called low-rank plus sparse (L+S) with joint sparsity. The proposed method improved dynamic contrast performance by integrating an additional temporal Fast Fourier Transform (FFT) constraint into the standard L+S decomposition method. In the proposed method, both temporal total variation (TV) sparsity constraint and temporal FFT constraint are integrated into a standard L+S decomposition model, forming L+S with joint sparsity. Temporal TV and Temporal FFT aim to suppress under-sampling artifacts and improve dynamic contrast in DCE-MRI, respectively. A fast composite splitting algorithm (FCSA) is adopted for solving the L+S model with multiple sparsity constraints, maintaining the reconstruction efficiency. A computer simulation framework was developed to compare the performance of L+S with joint sparsity and other reconstruction schemes. The performance of L+S with joint sparsity was tested using computer simulation and several liver DCE-MRI datasets. The proposed L+S based method achieved around four times faster reconstruction speed than the GRASP method. With the support of an additional sparsity constraint, the peak DCE signal in the proposed method was increased by more than 20% over that of a standard L+S decomposition.

Cite

CITATION STYLE

APA

Zhang, J., Najeeb, F., Wang, X., Xu, P., Omer, H., Zheng, J., … Wang, C. (2022). Improved Dynamic Contrast-Enhanced MRI Using Low Rank with Joint Sparsity. IEEE Access, 10, 121193–121203. https://doi.org/10.1109/ACCESS.2022.3222313

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free