Different impacts of native and exotic earthworms on rhizodeposit carbon sequestration in a subtropical soil

14Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Earthworms are known to regulate the sequestration of soil and leaf litter carbon (C). However, their impacts on the more accessible rhizospheric C, which represents a major energy source for soil food webs and an essential factor for C sequestration, are still unclear. Previous studies indicate that earthworms regulate the dynamics of SOC and leaf litter-C by increasing C accessibility to microbiota. However, in the case of labile rhizodeposit-C, microbiota might not require any pre-conditioning by earthworms and may rapidly metabolize most of this root-derived C. Consequently, potential pathways by which earthworms may affect the fate of rhizodeposit-C would be to regulate the biomass and/or activity of rhizosphere microbiota and, further, to mineralize/stabilize microbial products. A 13CO2 labelling experiment was performed to determine the impacts of four different earthworm species on the fate of tree rhizodeposit-C in a subtropical soil. We hypothesized that endogeic earthworm species, representing primarily geophagous species, would closely interact with soil microbiota and sequester the microbially metabolized rhizodeposit-C more efficiently than epigeic and anecic earthworm species. We found that irrespective of ecological group affiliation, the three native earthworms did not affect rhizodeposit-C sequestration. In contrast, the exotic endogeic species stimulated the immobilization of rhizodeposit-C in the biomass of root-associated bacteria and/or arbuscular mycorrhizal fungi and, further, accessed the microbiota-metabolized rhizodeposit-C more efficiently. As a consequence, the exotic endogeic earthworm species transiently tripled rhizodeposit-C retention in soil. We propose that the weak linkages between native earthworms and rhizodeposits-related microbiota limit earthworm impacts on rhizodeposit-C sequestration. However, the exotic endogeic species Pontoscolex corethrurus may potentially alter rhizodeposit-C dynamics in invaded areas by shifting rhizosphere microbial community composition. This work highlights a distinct mechanism by which earthworms can regulate C dynamics and indicates a significant contribution of invasive earthworm species to belowground processes.

Cite

CITATION STYLE

APA

Huang, J., Zhang, W., Liu, M., Briones, M. J. I., Eisenhauer, N., Shao, Y., … Xia, H. (2015). Different impacts of native and exotic earthworms on rhizodeposit carbon sequestration in a subtropical soil. Soil Biology and Biochemistry, 90, 152–160. https://doi.org/10.1016/j.soilbio.2015.08.011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free