Direct neurophysiological evidence for a role of the human anterior cingulate cortex in central command

Citations of this article
Mendeley users who have this article in their library.


Introduction: The role of the anterior cingulate cortex (ACC) is still controversial. The ACC has been implicated in such diverse functions as cognition, arousal and emotion in addition to motor and autonomic control. Therefore the ACC is the ideal candidate to orchestrate cardiovascular performance in anticipation of perceived skeletal activity. The aim of this experiment was to investigate whether the ACC forms part of the neural network of central command whereby cardiovascular performance is governed by a top-down mechanism. Methods & results: Direct local field potential (LFP) recordings were made using intraparenchymal electrodes in six human ACC's to measure changes in neuronal activity during performance of a motor task in which anticipation of exercise was uncoupled from skeletal activity itself. Parallel cardiovascular arousal was indexed by electrocardiographic changes in heart rate. During anticipation of exercise, ACC LFP power within the 25–60 Hz frequency band increased significantly by 21% compared to rest (from 62.7 μV 2 /Hz (±SE 4.94) to 76.0μV 2 /Hz (±SE 7.24); p = 0.004). This 25–60 Hz activity increase correlated with a simultaneous heart rate increase during anticipation (Pearson's r = 0.417, p = 0.016). Conclusions/Significance: We provide the first invasive electrophysiological evidence to support the role of the ACC in both motor preparation and the top-down control of cardiovascular function in exercise. This further implicates the ACC in the body's response to the outside world and its possible involvement in such extreme responses as emotional syncope and hyperventilation. In addition we describe the frequency at which the neuronal ACC populations perform these tasks in the human.




Gillies, M. J., Huang, Y., Hyam, J. A., Aziz, T. Z., & Green, A. L. (2019). Direct neurophysiological evidence for a role of the human anterior cingulate cortex in central command. Autonomic Neuroscience: Basic and Clinical, 216, 51–58.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free