Discovering syntactic deep structure via Bayesian statistics

7Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

In the Bayesian framework, a language learner should seek a grammar that explains observed data well and is also a priori probable. This paper proposes such a measure of prior probability. Indeed it develops a full statistical framework for lexicalized syntax. The learner's job is to discover the system of probabilistic transformations (often called lexical redundancy rules) that underlies the patterns of regular and irregular syntactic constructions listed in the lexicon. Specifically, the learner discovers what transformations apply in the language, how often they apply, and in what contexts. It considers simpler systems of transformations to be more probable a priori. Experiments show that the learned transformations are more effective than previous statistical models at predicting the probabilities of lexical entries, especially those for which the learner had no direct evidence. © 2002 Cognitive Science Society, Inc. All rights reserved.

Cite

CITATION STYLE

APA

Eisner, J. (2002). Discovering syntactic deep structure via Bayesian statistics. Cognitive Science, 26(3), 255–268. https://doi.org/10.1016/S0364-0213(02)00069-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free