Discrete modeling of crack bridging by a discontinuous platelet with a controlled interface

Citations of this article
Mendeley users who have this article in their library.


Crack bridging by discontinuous fibers can make brittle materials tougher by transferring stresses from the crack tip to elsewhere in the matrix material. One important aspect of crack bridging is the nature of the interface between the fibers and the matrix material. In this paper, a two-dimensional numerical model of bridging a Mode I loaded crack by linear elastic discontinuous platelets is developed for two different types of interfaces. The first type is a perfectly bonded interface. The second type is an imperfect interface described as a stick-slip interface. A shear-lag model to predict platelet pullout is developed in detail to verify the numerical implementation of the stick-slip interface. An example of a crack tip bridged by a platelet is examined for both interfaces. The perfectly bonded interface will reduce the Stress Intensity Factor (SIF) of the crack greatly but introduces new stress concentrations at the platelet ends. The stick-slip interface can be tailored to also reduce the SIF while not introducing new stress concentrations. © 2008 Elsevier Ltd. All rights reserved.




Sanborn, S. E., & Prévost, J. H. (2008). Discrete modeling of crack bridging by a discontinuous platelet with a controlled interface. International Journal of Solids and Structures, 45(18–19), 5059–5073. https://doi.org/10.1016/j.ijsolstr.2008.05.008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free