MicroRNAs (miRs) have been reported to serve key roles in cancer. To investigate the function of miR-885-5p in osteosarcoma, the expression levels of miR-885-5p were analyzed in 85 osteosarcoma tissue samples and adjacent non-cancerous tissue samples, using reverse transcription-quantitative polymerase chain reaction analysis. It was demonstrated that miR-885-5p was downregulated in osteosarcoma tissues and cell lines. Notably, the expression level of miR-885-5p was closely associated with tumor size, Tumor-Node-Metastasis stage and lymph node metastasis. Additionally, low expression levels of miR-885-5p also predicted a poor prognosis of osteosarcoma. To further decipher the roles of miR-885-5p in osteosarcoma, it was determined that β-catenin, a key component of the Wnt signaling pathway, was a target of miR-885-5p. Furthermore, several functional experiments, including a colony formation assay, CCK-8 assay, wound healing assay and Transwell invasion assay, revealed that miR-885-5p suppressed cell proliferation, migration and invasion through inhibition of β-catenin. The results of the present study provide a novel insight into the molecular roles of miR-885-5p in osteosarcoma.
CITATION STYLE
Liu, Y. A. N., Bao, Z., Tian, W., & Huang, G. (2019). MiR-885-5p suppresses osteosarcoma proliferation, migratioand invasion through regulation of β-catenin. Oncology Letters, 17(2), 1996–2004. https://doi.org/10.3892/ol.2018.9768
Mendeley helps you to discover research relevant for your work.