Casein Kinase 2-Interacting Protein-1 Alleviates High Glucose-Reduced Autophagy, Oxidative Stress, and Apoptosis in Retinal Pigment Epithelial Cells via Activating the p62/KEAP1/NRF2 Signaling Pathway

8Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. Casein kinase 2-interacting protein-1 (CKIP-1) has been proved to be associated with complications of diabetes. Diabetic retinopathy is a main diabetic complication which usually leads to blindness. The current study aims to investigate the role of CKIP-1 in high glucose-treated retinal pigment epithelial (RPE) cells which is a component of blood-retinal barriers. Methods. The RPE cells, ARPE-19, are treated with high glucose to mimic the diabetic stimulation. CKIP-1 was overexpressed in ARPE-19 cells to evaluate its effects on autophagy, oxidative stress, and apoptosis induced by high glucose treatment, using Western blot, immunofluorescence, and flow cytometry assays, respectively. Results. CKIP-1 was expressed at a lower level in high glucose-treated cells than in normal glucose cells. Overexpression of CKIP-1 enhanced the Nrf2 translocation to the nucleus. Furthermore, high glucose-induced autophagy, oxidative stress, and apoptosis were inhibited after overexpression of CKIP-1. Also, CKIP-1 regulates the p62/Keap1/Nrf2 signaling, which might be the potential mechanism in this model. Conclusion. In conclusion, CKIP-1 may be a potential therapeutic target that protects RPE cells from injury and subsequent diabetic retinopathy induced by high glucose.

Cite

CITATION STYLE

APA

Zhao, X., Wang, J., Li, P., Tang, L., & Bai, Y. (2021). Casein Kinase 2-Interacting Protein-1 Alleviates High Glucose-Reduced Autophagy, Oxidative Stress, and Apoptosis in Retinal Pigment Epithelial Cells via Activating the p62/KEAP1/NRF2 Signaling Pathway. Journal of Ophthalmology, 2021. https://doi.org/10.1155/2021/6694050

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free