Wnt signaling regulates a wide range of developmental processes such as proliferation, cell migration, axon guidance, and cell fate determination. In this report, we studied the expression of secreted frizzled related protein-2 (SFRP-2), which codes for a putative Wnt inhibitor, in the developing nervous system. SFRP-2 is expressed in several discrete neuroepithelial domains, including the diencephalon, the insertion of the eminentia thalami into the caudal telencephalon, and the pallial-subpallial boundary (PSB). We also noted that Wnt-7b expression was similar to SFRP-2 expression. Because many of these structures are disrupted in Pax-6 mutant mice, we examined SFRP-2 and Wnt-7b expression in the forebrains of Pax-6 Sey/Sey mice. We found that Pax-6 mutants lack SFRP-2 expression in the PSB and diencephalon. Interestingly, Pax-6 mutants also lack Wnt-7b expression in the PSB, but Wnt-7b expression in the diencephalon is preserved. Furthermore, in the spinal cord of Pax-6 mutants, SFRP-2 and Wnt-7b expression was greatly reduced. Our results suggest that by virtue of its apposition to Wnt-7b expression, SFRP-2 may modulate its function, particularly at boundaries such as the PSB, and that changes in Wnt signaling contribute to the phenotype of Pax-6 mutants.
CITATION STYLE
Kim, A. S., Anderson, S. A., Rubenstein, J. L., Lowenstein, D. H., & Pleasure, S. J. (2001). Pax-6 regulates expression of SFRP-2 and Wnt-7b in the developing CNS. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 21(5). https://doi.org/10.1523/jneurosci.21-05-j0002.2001
Mendeley helps you to discover research relevant for your work.