Fracture-related infection (FRI) is a common and devastating complication of orthopedic trauma in all settings. Data on the microbiological profile and susceptibility of FRI to antibiotics in low-income countries are scarce. Therefore, this study aimed to investigate the microbial patterns and antimicrobial susceptibility of FRI in a sub-Saharan African setting in order to provide guidance for the formulation of evidence-based empirical antimicrobial regimens. We conducted a retrospective analysis of patients treated for FRI with deep tissue sampling for microbiological culture from January 2016 to August 2023 in four tertiary-level hospitals in Yaoundé, Cameroon. There were 246 infection episodes in 217 patients. Cultures were positive in 209 (84.9%) cases and polymicrobial in 109 (44.3%) cases. A total of 363 microorganisms from 71 different species were identified, of which 239 (65.8%) were Gram-negative. The most commonly isolated pathogens were Staphylococcus aureus (n = 69; 19%), Enterobacter cloacae (n = 43; 11.8%), Klebsiella pneumoniae (n = 35; 9.6%), Escherichia coli (n = 35; 9.6%), and Pseudomonas aeruginosa (n = 27; 7.4%). Coagulase-negative staphylococci (CoNS) were isolated in only 21 (5.9%) cases. Gram-negative bacteria accounted for the majority of the infections in early (70.9%) and delayed (73.2%) FRI, but Gram-positive bacteria were prevalent in late FRI (51.7%) (p < 0.001). Polymicrobial infections were more frequent in the early (55.9%) and delayed (41.9%) groups than in the late group (27.6%) (p < 0.001). Apart from Staphylococcus aureus, there was no significant difference in the proportions of causative pathogens between early, delayed, and late FRI. This study found striking resistance rates of bacteria to commonly used antibiotics. MRSA accounted for 63% of cases. The most effective antibiotics for all Gram-positive bacteria were linezolid (96.4%), vancomycin (92.5%), clindamycin (85.3%), and fucidic acid (89.4%). For Gram-negative bacteria, only three antibiotics displayed a sensitivity >50%: amikacin (80.4%), imipenem (74.4%), and piperacillin + tazobactam (57%). The most effective empirical antibiotic therapy (with local availability) was the combination of vancomycin and amikacin or vancomycin and imipenem. In contrast to the literature from high-resource settings, this study revealed that in a sub-Saharan African context, Gram-negative bacteria are the most common causative microorganisms of FRI. This study revealed striking resistance rates to commonly used antibiotics, which will require urgent action to prevent antimicrobial resistance in low and middle-income countries.
CITATION STYLE
Fonkoue, L., Tissingh, E. K., Ngouateu, M. T., Muluem, K. O., Ngongang, O., Mbouyap, P., … Cornu, O. (2024). The Microbiological Profile and Antibiotic Susceptibility of Fracture Related Infections in a Low Resource Setting Differ from High Resource Settings: A Cohort Study from Cameroon. Antibiotics, 13(3). https://doi.org/10.3390/antibiotics13030236
Mendeley helps you to discover research relevant for your work.