Aroma formation in retentostat co-cultures of Lactococcus lactis and Leuconostoc mesenteroides

2Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc mesenteroides are considered to be the main aroma producers in Dutch-type cheeses. Both species of lactic acid bacteria were grown in retentostat mono- and co-cultures to investigate their interaction at near-zero growth rates and to determine if co-cultivation enhances the aroma complexity compared to single species performance. During retentostat mono-cultures, the growth rates of both species decreased to less than 0.001 h −1 and a large fraction of the cells became viable but not culturable. Compared to Lc. mesenteroides, L. lactis reached a 3.4-fold higher biomass concentration caused by i) a higher ATP yield on substrate, ii) a higher biomass yield on ATP and iii) a lower maintenance requirement (m ATP ). Dynamic models estimated that the m ATP of both species decreased approximately 7-fold at near-zero growth rates compared to high growth rates. Extension of these models by assuming equal substrate distribution resulted in excellent prediction of the biomass accumulation in retentostat co-cultures with L. lactis dominating (100:1) as observed in ripened cheese. Despite its low abundance (∼1%), Lc. mesenteroides contributed to aroma production in co-cultures as indicated by the presence of all 5 specific Lc. mesenteroides compounds. This study provides insights in the production of cheese aroma compounds outside the cheese matrix by co-cultures of L. lactis and Lc. mesenteroides, which could be used as food supplements in dairy or non-dairy products.

Cite

CITATION STYLE

APA

van Mastrigt, O., Egas, R. A., Abee, T., & Smid, E. J. (2019). Aroma formation in retentostat co-cultures of Lactococcus lactis and Leuconostoc mesenteroides. Food Microbiology, 82, 151–159. https://doi.org/10.1016/j.fm.2019.01.016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free