Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection

61Citations
Citations of this article
132Readers
Mendeley users who have this article in their library.

Abstract

Stress has become a dangerous health problem in our life, especially in student education journey. Accordingly, previous methods have been conducted to detect mental stress based on biological and biochemical effects. Moreover, hormones, physiological effects, and skin temperature have been extensively used for stress detection. However, based on the recent literature, biological, biochemical, and physiological-based methods have shown inconsistent findings, which are initiated due to hormones' instability. Therefore, it is crucial to study stress using different mechanisms such as Electroencephalogram (EEG) signals. In this research study, the frontal lobes EEG spectrum analysis is applied to detect mental stress. Initially, we apply a Fast Fourier Transform (FFT) as a feature extraction stage to measure all bands' power density for the frontal lobe. After that, we used two type of classifications such as subject wise and mix (mental stress vs. control) using Support Vector Machine (SVM) and Naive Bayes (NB) machine learning classifiers. Our obtained results of the average subject wise classification showed that the proposed technique has better accuracy (98.21%). Moreover, this technique has low complexity, high accuracy, simple and easy to use, no over fitting, and it could be used as a real-time and continuous monitoring technique for medical applications.

Cite

CITATION STYLE

APA

AlShorman, O., Masadeh, M., Heyat, M. B. B., Akhtar, F., Almahasneh, H., Ashraf, G. M., & Alexiou, A. (2022). Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection. Journal of Integrative Neuroscience, 21(1). https://doi.org/10.31083/j.jin2101020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free