Clean air actions (CAAs) in China have been linked to considerable benefits in public health. However, whether the beneficial effects of CAAs are equally distributed geographically is unknown. Using high-resolution maps of the distributions of major air pollutants (fine particulate matter [PM2.5] and ozone [O3]) and population, we aimed to track spatiotemporal changes in health impacts from, and geographic inequality embedded in, the reduced exposures to PM2.5 and O3 from 2013 to 2020. We used a method established by the Global Burden of Diseases Study. By analyzing the changes in loss of life expectancy (LLE) attributable to PM2.5 and O3, we calculated the gain of life expectancy (GLE) to quantify the health benefits of the air-quality improvement. Finally, we assessed the geographic inequality embedded in the GLE using the Gini index (GI). Based on risk assessments of PM2.5 and O3, during the first stage of CAAs (2013 to 2017), the mean GLE was 1.87 months. Half of the sum of the GLE was disproportionally distributed in about one quarter of the population exposed (GI 0.44). During the second stage of CAAs (2017 to 2020), the mean GLE increased to 3.94 months and geographic inequality decreased (GI 0.18). According to our assessments, CAAs were enhanced, from the first to second stages, in terms of not only preventing premature mortality but also ameliorating health inequalities. The enhancements were related to increased sensitivity to the health effects of air pollution and synergic control of PM2.5 and O3 levels. Our findings will contribute to optimizing future CAAs.
CITATION STYLE
Xue, T., Wang, R., Wang, M., Wang, Y., Tong, D., Meng, X., … Zhu, T. (2024). Health benefits from the rapid reduction in ambient exposure to air pollutants after China’s clean air actions: progress in efficacy and geographic equality. National Science Review, 11(2). https://doi.org/10.1093/nsr/nwad263
Mendeley helps you to discover research relevant for your work.