Chronic myeloid leukemia is a hematopoietic stem cell cancer, originated by the perpetually "switched on" activity of the tyrosine kinase Bcr-Abl, leading to uncontrolled proliferation and insensitivity to apoptotic stimuli. The genetic phenotype of myeloid leukemic K562 cells includes the suppression of cytosolic sialidase Neu2. Neu2 transfection in K562 cells induced a marked decrease (-30% and -80%) of the mRNA of the antiapoptotic factors Bcl-XL and Bcl-2, respectively, and an almost total disappearance of Bcl-2 protein. In addition, gene expression and activity of Bcr-Abl underwent a 35% diminution, together with a marked decrease of Bcr-Abl-dependent Src and Lyn kinase activity. Thus, the antiapoptotic axis Bcr-Abl, Src, and Lyn, which stimulates the formation of Bcl-XL and Bcl-2, was remarkably weakened. The ultimate consequences of these modifications were an increased susceptibility to apoptosis of K562 cells and a marked reduction of their proliferation rate. The molecular link between Neu2 activity and Bcr-Abl signaling pathway may rely on the desialylation of some cytosolic glycoproteins. In fact, three cytosolic glycoproteins, in the range 45-66 kDa, showed a 50-70% decrease of their sialic acid content upon Neu2 expression, supporting their possible role as modulators of the Bcr-Abl complex. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Tringali, C., Lupo, B., Anastasia, L., Papini, N., Monti, E., Bresciani, R., … Venerando, B. (2007). Expression of sialidase Neu2 in leukemic K562 cells induces apoptosis by impairing Bcr-Abl/Src kinases signaling. Journal of Biological Chemistry, 282(19), 14364–14372. https://doi.org/10.1074/jbc.M700406200
Mendeley helps you to discover research relevant for your work.