Skip to main content

Methods and system for segmentation of isolated nuclei in microscopic breast fine needle aspiration cytology images

1Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Computer vision systems for automated breast cancer diagnosis using Fine Needle Aspiration Cytology (FNAC) images are under development for a while now. Accurate segmentation of the nuclei in microscopic images is crucial for functioning of these systems, as most quantify and analyze nuclear features for diagnosis. This paper presents a nucleus segmentation system (NSS) involving pre-processing, pre-segmentation and refined segmentation stages. The NSS includes a novel pixel transformation step to create a high contrast grayscale representation of the input color image. The grayscale image gives NSS the capability-to disregard elements that mimic nuclear morphological and luminescence characteristics, and to minimize effects of non-specific staining of cytoplasm by Hematoxylin. Experimental results illustrate generalizability of the NSS to use multiple refined segmentation techniques and particularly achieve accurate nucleus segmentation using active contours without edges(F-score > 0.92). The paper also presents the results of experiments conducted to study the impact of image pre-processing steps on the NSS performance. The pre-processing steps are observed to improve accuracy and consistency across tested refined segmentation techniques.

Cite

CITATION STYLE

APA

Garud, H., Karri, S. P. K., Sheet, D., Maity, A. K., Chatterjee, J., Mahadevappa, M., & Ray, A. K. (2016). Methods and system for segmentation of isolated nuclei in microscopic breast fine needle aspiration cytology images. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10481 LNCS, pp. 380–392). Springer Verlag. https://doi.org/10.1007/978-3-319-68124-5_33

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free