Metal−organic frameworks (MOFs) constructed by tetrathiafulvalene-tetrabenzoate (H4TTFTB) have been widely studied in porous materials, while the studies of other TTFTB derivatives are rare. Herein, the meta derivative of the frequently used p-H4TTFTB ligand, m-H4TTFTB, and lanthanide (Ln) metal ions (Tb3+, Er3+, and Gd3+) were assembled into three novel MOFs. Compared with the reported porous Ln-TTFTB, the resulted three-dimensional frameworks, Ln-m-TTFTB ([Ln2(m-TTFTB)(m-H2TTFTB)0.5(HCOO)(DMF)]·2DMF·3H2O), possess a more dense stacking which leads to scarce porosity. The solid-state cyclic voltammetry studies revealed that these MOFs show similar redox activity with two reversible one-electron processes at 0.21 and 0.48 V (vs. Fc/Fc+). The results of magnetic properties suggested Dy-m-TTFTB and Er-m-TTFTB exhibit slow relaxation of the magnetization. Porosity was not found in these materials, which is probably due to the meta-configuration of the m-TTFTB ligand that seems to hinder the formation of pores. However, the m-TTFTB ligand has shown to be promising to construct redox-active or electrically conductive MOFs in future work.
CITATION STYLE
Huang, H. R., Yang, Z. M., Zhou, X. C., Zhang, G., & Su, J. (2022). Redox-Active Metal-Organic Frameworks with Three-Dimensional Lattice Containing the m-Tetrathiafulvalene-Tetrabenzoate. Molecules, 27(13). https://doi.org/10.3390/molecules27134052
Mendeley helps you to discover research relevant for your work.