The expression of IL-17A and programmed death ligand 1 (PDL1) is increased in estrogen receptor-negative breast cancer. IL-17A promotes tumor cell survival and invasiveness and inhibits the antitumor immune response. The PDL1-PD1 (programmed death protein 1) signaling pathway promotes escape from immune surveillance in tumor cells. The pro-tumor properties of IL-17A and PDL1 in various cancers have been previously examined; however, the relationship and roles of IL-17A and PDL1 in ER-negative breast cancer have not been evaluated. Therefore, we assessed whether IL-17A promotes PDL1 expression in tumor cells and whether targeting of IL-17A could inhibit ER-negative breast cancer progression in a murine model. Our study revealed that IL-17A promoted PDL1 expression in human and mouse cells. In the murine cancer model, targeting of IL-17A inhibited PDL1 expression in the tumor microenvironment, decreased the percentage of Treg cells in tumor-infiltrating lymphocytes, and promoted CD4+ and CD8+ T cells to secrete interferon gamma. More importantly, treatment with combined anti-IL-17A and anti-PDL1 antibodies enhanced antitumor effects in favor of tumor eradication. Thus, our study established a pro-tumor role of IL-17A in promoting tumor immune escape and supports the development of a novel cytokine immunotherapy against breast cancer.
CITATION STYLE
Ma, Y. F., Chen, C., Li, D., Liu, M., Lv, Z. W., Ji, Y., & Xu, J. (2017). Targeting of interleukin (IL)-17A inhibits PDL1 expression in tumor cells and induces anticancer immunity in an estrogen receptor-negative murine model of breast cancer. Oncotarget, 8(5), 7614–7624. https://doi.org/10.18632/oncotarget.13819
Mendeley helps you to discover research relevant for your work.