Real-time prediction of intradialytic hypotension using machine learning and cloud computing infrastructure

14Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: In maintenance hemodialysis patients, intradialytic hypotension (IDH) is a frequent complication that has been associated with poor clinical outcomes. Prediction of IDH may facilitate timely interventions and eventually reduce IDH rates. Methods: We developed a machine learning model to predict IDH in in-center hemodialysis patients 15-75 min in advance. IDH was defined as systolic blood pressure (SBP) <90 mmHg. Demographic, clinical, treatment-related and laboratory data were retrieved from electronic health records and merged with intradialytic machine data that were sent in real-time to the cloud. For model development, dialysis sessions were randomly split into training (80%) and testing (20%) sets. The area under the receiver operating characteristic curve (AUROC) was used as a measure of the model's predictive performance. Results: We utilized data from 693 patients who contributed 42 656 hemodialysis sessions and 355 693 intradialytic SBP measurements. IDH occurred in 16.2% of hemodialysis treatments. Our model predicted IDH 15-75 min in advance with an AUROC of 0.89. Top IDH predictors were the most recent intradialytic SBP and IDH rate, as well as mean nadir SBP of the previous 10 dialysis sessions. Conclusions: Real-time prediction of IDH during an ongoing hemodialysis session is feasible and has a clinically actionable predictive performance. If and to what degree this predictive information facilitates the timely deployment of preventive interventions and translates into lower IDH rates and improved patient outcomes warrants prospective studies.

Cite

CITATION STYLE

APA

Zhang, H., Wang, L. C., Chaudhuri, S., Pickering, A., Usvyat, L., Larkin, J., … Kotanko, P. (2023). Real-time prediction of intradialytic hypotension using machine learning and cloud computing infrastructure. Nephrology Dialysis Transplantation, 38(7), 1761–1769. https://doi.org/10.1093/ndt/gfad070

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free