Self-Consistent Ice Mass Balance and Regional Sea Level From Time-Variable Gravity

3Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Measurements of time-variable gravity from the Gravity Recovery and Climate Experiment (GRACE) and the GRACE Follow-on (GRACE-FO) missions are an invaluable tool for monitoring changes in the mass of the Earth's glaciated regions. We improve upon estimates of glacier and ice sheet mass balance from time-variable gravity by including instantaneous spatiotemporal variations in sea level. Here, a least squares mascon technique is combined with solutions to the sea level equation to iteratively correct the GRACE/GRACE-FO data for the induced sea level response on a monthly basis. We find that variations in regional sea level affect ice sheet mass balance estimates in Greenland by approximately 4% and in Antarctic by approximately 5%. Since 2002, the Greenland ice sheet has been losing mass at an average rate of 263 ± 23 Gt/yr, and the Antarctic ice sheet has been losing mass at average rates between 90 ± 52 and 122 ± 53 Gt/yr depending on the rate of glacial isostatic adjustment. The mass losses from both ice sheets represent an increase of 15.6 ± 2.0 mm to global mean sea levels since 2002.

Cite

CITATION STYLE

APA

Sutterley, T. C., Velicogna, I., & Hsu, C. W. (2020). Self-Consistent Ice Mass Balance and Regional Sea Level From Time-Variable Gravity. Earth and Space Science, 7(3). https://doi.org/10.1029/2019EA000860

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free