The processing of pre-experimentally unfamiliar stimuli such as abstract figures and nonwords is poorly understood. Here, we considered the role of memory strength in the discrimination process of such stimuli using a three-phase old/new recognition memory paradigm. Memory strength was manipulated as a function of the levels of processing (deep vs. shallow) and repetition. Behavioral results were matched to brain responses using EEG. We found that correct identification of the new abstract figures and non-words was superior to old item recognition when they were merely studied without repetition, but not when they were semantically processed or drawn. EEG results indicated that successful new item identification was marked by a combination of the absence of familiarity (N400) and recollection (P600) for the studied figures. For both the abstract figures and the non-words, the parietal P600 was found to differentiate between the old and new items (late old/new effects). The present study extends current knowledge on the processing of pre-experimentally unfamiliar figurative and verbal stimuli by showing that their discrimination depends on experimentally induced memory strength and that the underlying brain processes differ. Nevertheless, the P600, similar to pre-experimentally familiar figures and words, likely reflects improved recognition memory of meaningless pictorial and verbal items.
CITATION STYLE
Toth, M., Sambeth, A., & Blokland, A. (2021). EEG correlates of old/new discrimination performance involving abstract figures and non-words. Brain Sciences, 11(6). https://doi.org/10.3390/brainsci11060719
Mendeley helps you to discover research relevant for your work.