HAA by the first {Mn(iii)OH} complex with all O-donor ligands

3Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

There is considerable interest in MnOHx moieties, particularly in the stepwise changes in those O-H bonds in tandem with Mn oxidation state changes. The reactivity of aquo-derived ligands, {MOHx}, is also heavily influenced by the electronic character of the other ligands. Despite the prevalence of oxygen coordination in biological systems, preparation of mononuclear Mn complexes of this type with all O-donors is rare. Herein, we report several Mn complexes with perfluoropinacolate (pinF)2− including the first example of a crystallographically characterized mononuclear {Mn(iii)OH} with all O-donors, K2[Mn(OH)(pinF)2], 3. Complex 3 is prepared via deprotonation of K[Mn(OH2)(pinF)2], 1, the pKa of which is estimated to be 18.3 ± 0.3. Cyclic voltammetry reveals quasi-reversible redox behavior for both 1 and 3 with an unusually large ΔEp, assigned to the Mn(iii/ii) couple. Using the Bordwell method, the bond dissociation free energy (BDFE) of the O-H bond in {Mn(ii)-OH2} is estimated to be 67-70 kcal mol−1. Complex 3 abstracts H-atoms from 1,2-diphenylhydrazine, 2,4,6-TTBP, and TEMPOH, the latter of which supports a PCET mechanism. Under basic conditions in air, the synthesis of 1 results in K2[Mn(OAc)(pinF)2], 2, proposed to result from the oxidation of Et2O to EtOAc by a reactive Mn species, followed by ester hydrolysis. Complex 3 alone does not react with Et2O, but addition of O2 at low temperature effects the formation of a new chromophore proposed to be a Mn(iv) species. The related complexes K(18C6)[Mn(iii)(pinF)2], 4, and (Me4N)2[Mn(ii)(pinF)2], 5, have also been prepared and their properties discussed in relation to complexes 1-3.

Cite

CITATION STYLE

APA

Moore, S. M., Sun, C., Steele, J. L., Laaker, E. M., Rheingold, A. L., & Doerrer, L. H. (2023). HAA by the first {Mn(iii)OH} complex with all O-donor ligands. Chemical Science, 14(30), 8187–8195. https://doi.org/10.1039/d3sc01971c

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free