RNA interference (RNAi) is triggered by the presence of a double-stranded RNA (dsRNA) in the cell, and results in the silencing of homologous gene expression by the specific degradation of an mRNA containing the same sequence. dsRNA-mediated RNAi can be used in a wide variety of eucaryotes to induce the sequence-specific inhibition of gene expression. Synthetic 21-23 nucleotide (nt) small interfering RNAs (siRNAs) with 2-nt 3′ overhangs were recently found to mediate efficient sequence-specific mRNA degradation in mammalian cells. Here, we show that synthetic siRNAs targeted against the viral structural Env proteins encoded by HIV-1 can specifically suppress the expression of HIV-1 genes. The siRNA-mediated RNAi also had advantages over antisense RNA-mediated inhibition, in terms of both the ease of designing effective antiviral agents and their potency. Especially, our best env-specific siRNAs, E7145 targeted to the central region of the V3 loop and E7490 targeted to the CD4 binding site of conserved regions on gp 120, significantly inhibited the HIV-1 gene expression. Furthermore, E7145 and E7490 were effective against HIV-1NL4-3 replication in PBMCs for a relatively long time (14 days). Therefore, the use of synthetic siRNAs provides a simple, rapid, and cost-effective tool for new anti-HIV-1 gene therapeutics.
CITATION STYLE
Park, W. S., Hayafune, M., Miyano-Kurosaki, N., & Takaku, H. (2003). Specific HIV-1 env gene silencing by small interfering RNAs in human peripheral blood mononuclear cells. Gene Therapy, 10(24), 2046–2050. https://doi.org/10.1038/sj.gt.3302099
Mendeley helps you to discover research relevant for your work.