Tomato processing leads to the production of considerable amounts of residues, mainly in the form of tomato skins, seeds and vascular tissues, which still contain bioactive molecules of interest for food, pharmaceutical and nutraceutical industries. These include carotenoids, such as lycopene and β-carotene, tocopherols and sitosterols, among others. Supercritical fluid extraction is well positioned for the valorization of tomato residues prior to disposal, because it remains an environmentally safe extraction process, especially when using carbon dioxide as the solvent. In this article, we provide an extensive literature overview of the research on the supercritical fluid extraction of tomato residues. We start by identifying the most relevant extractables present in tomatoes (e.g., lycopene) and their main bioactivities. Then, the main aspects affecting the extraction performance are covered, starting with the differences between tomato matrixes (e.g., seeds, skins and pulp) and possible pretreatments to enhance extraction (e.g., milling, drying and enzymatic digestion). Finally, the effects of extraction conditions, such as pressure, temperature, cosolvent, flow rate and time, are discussed.
CITATION STYLE
Aniceto, J. P. S., Rodrigues, V. H., Portugal, I., & Silva, C. M. (2022, January 1). Valorization of tomato residues by supercritical fluid extraction. Processes. MDPI. https://doi.org/10.3390/pr10010028
Mendeley helps you to discover research relevant for your work.