Phenolics impart Au3+-stress tolerance to cowpea by generating nanoparticles

40Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

While evaluating impact of Au nanoparticles on seed germination and early seedling growth of cowpea, HAuCl4 was used as control. Seedlings of cowpea raised in HAuCl4, even at concentration as high as 1 mM, did not show any suppression in growth. Accordingly, Au3+, despite being a heavy metal, did not alter levels of stress markers (viz. proline and malondialdehyde) in cowpea. Interestingly, cowpea turned clear pale yellow HAuCl4 solutions colloidal purple during the course of seed germination and seedling growth. These purple colloidal suspensions showed Au-nanoparticle specific surface plasmon resonance band in absorption spectra. Transmission electron microscopic and powder X-ray diffraction investigations confirmed presence of crystalline Au-nanoparticles in these purple suspensions. Each germinating seed of cowpea released ∼35 nmoles of GAE of phenolics and since phenolics promote generation of Au-nanoparticles, which are less/non toxic compared to Au3+, it was contemplated that potential of cowpea to withstand Au3+ is linked to phenolics. Of the different components of germinating seed of cowpea tested, seed coat possessed immense power to generate Aunanoparticles, as it was the key source of phenolics. To establish role of phenolics in generation of Au-nanoparticles (i) seed coat and (ii) the incubation medium in which phenolics were released by germinating seeds, were tested for their efficacy to generate Au-nanoparticles. Interestingly, incubation of either of these components with Au3+ triggered increase in generation of Au-nanoparticles with concomitant decrease in phenolics. Accordingly, with increase in concentration of Au3+, a proportionate increase in generation of Au-nanoparticles and decrease in phenolics was recorded. In summary, our findings clearly established that cowpea possessed potential to withstand Au3+-stress as the phenolics released by seed coat of germinating seeds possess potential to reduce toxic Au3+ to form non/less toxic Au-nanoparticles. Our investigations also pave a novel, simple, green and economically viable protocol for generation of Au-nanoparticles. © 2014 Shabnam et al.

Cite

CITATION STYLE

APA

Shabnam, N., Pardha-Saradhi, P., & Sharmila, P. (2014). Phenolics impart Au3+-stress tolerance to cowpea by generating nanoparticles. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0085242

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free