Diffraction focal position and vector diffraction theory for micro holographic storage systems

N/ACitations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

In this study, we proposed a method to determine the optimal focal position for micro-holographic storage systems, using vector diffraction theory; the theory provides exact solutions when the numerical aperture (NA) exceeds 0.6. The best diffraction focus was determined by the position and wavelength corresponding to minimal spherical aberration. The calculated refractive index modulation, polarization illumination, and boundary conditions at the interface of different media were analyzed. From the results of our analysis, we could confirm the size of micrograting as a function of NA and wavelength, based on vector diffraction theory, compared with scalar diffraction theory which defines the micrograting by λ/(2NA) . To demonstrate our analysis, we adapted an optical alignment method using a Twyman-Green interferometer, and could obtain good agreement between analysis and experimental results.

Cite

CITATION STYLE

APA

Min, C. K., Moon, H., Kim, D. H., Park, N. C., Park, K. S., & Park, Y. P. (2014). Diffraction focal position and vector diffraction theory for micro holographic storage systems. Applied Sciences (Switzerland), 4(1), 57–65. https://doi.org/10.3390/app4010057

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free